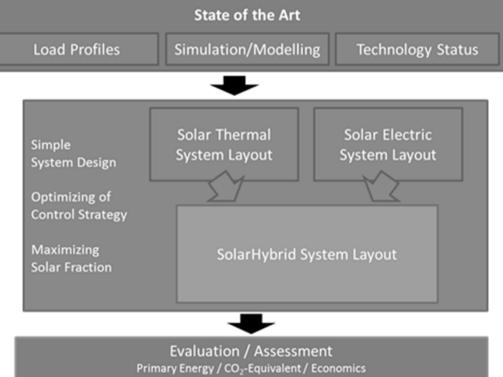


danielneyerbrainworks

core[©] the cybernetics of renewable energy and efficiency.

Solar Hybrid Heating and Cooling

NEYER Daniel


With friendly support by: FH OÖ Forschungs und Entwicklungs GmbH PinK gmbH Engie Kältetechnik GmbH

Hilbert Focke Christian Halmdienst Jürgen Furtner

Goal

» Reach cost competitive capability by radical reduction of components and optimized control strategies

→ (Solar-) Hybrid Systems

Methodology

» Investigation on component simulation models

Absorption & vapour compression chiller

» Construction of ACM & VCC

Vapour compression chiller (VCC)

Refrigerant ammonia, frequency controlled piston compressor, flooded evaporator, hot gas bypass

Absorption chiller (ACM developed in DAKTris)

Ammonia/water, single-/half-effect, high re-cooling temperatures

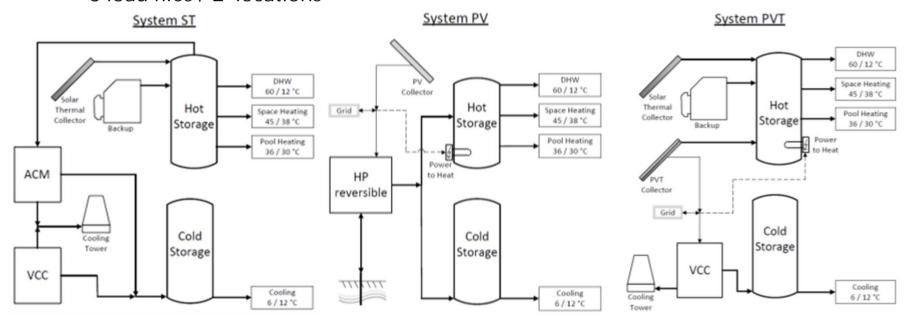
» Steady state and dynamic laboratory measurements

Characteristic curves
Hardware-in-the-Loop
Solar only & hybrid operation

» Simulation studies

Realistic case: hotel profile

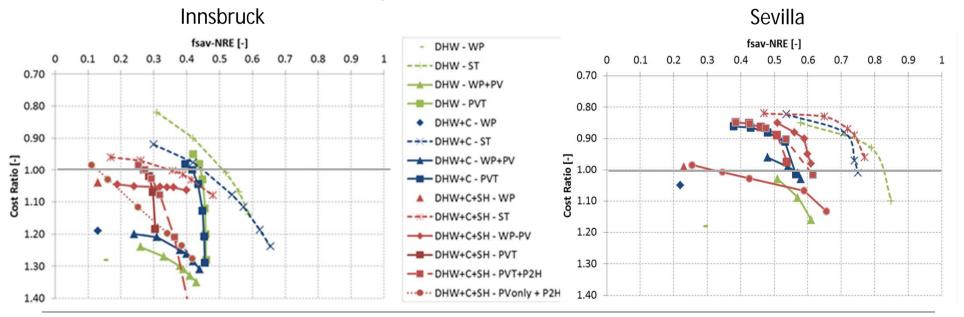
Potential study: solar / hybrid potentials


» Assessment and sensitivity analysis with T53E4 Tool

Simulation studies

- » Profile: heating / cooling / dehum. / domestic hot water / pool
- » HVAC layouts

7 System Layouts 3 load files / 2 locations



» Validated by measurements; Annually simulation studies

Results simulation studies

- » f_{sav.NRE} and CR strongly depend only DHW (green), DHW+C (blue), DHW+C+SH (red) Location (load & solar yield,...) System configuration
- » The higher the savings, the higher the costs
- » ST more efficient & less expensive

Laboratory measurements

» Hardware-in-the-Loop @ UIBK labs

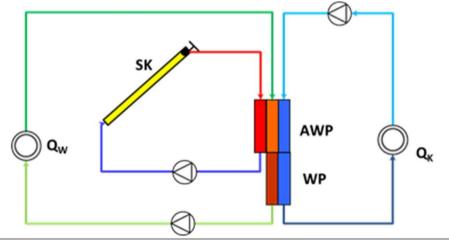
TRNSYS & LabView System in TRNSYS simulations ACM & VCC in real operation

» Steady state / Large matrix of operation

ACM

LT: 1.5–3, MT: 4.25–6, HT: 3–4.5 m³/h

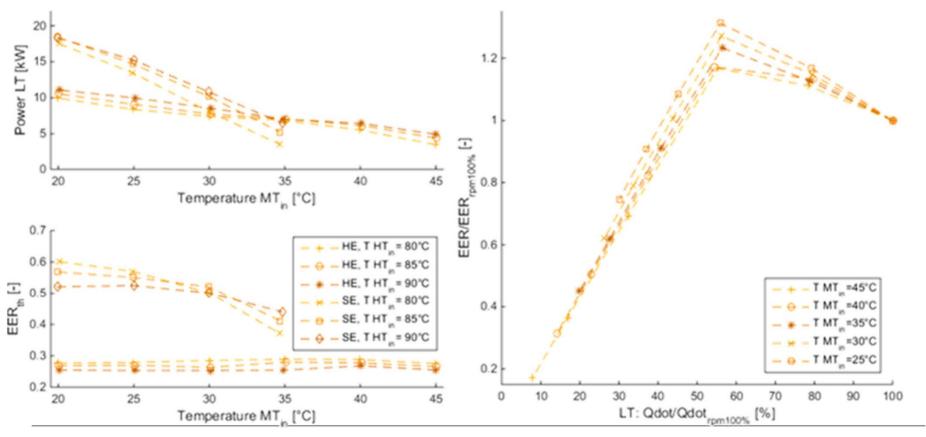
LT: 6-22, HT: 80-90, MT: SE 20-35, HE 20-45°C


VCC

LT: 2–3.5, MT: 3.5–6 m³/h LT: 12–22, MT: 25–45°C

» Dynamic measurements

Daily & weekly profiles ACM solar direct ACM only ACM & VCC hybrid



Measurement results – characteristic curves

- » Wide range of operation is possible
- » Good performance & optimization Potential

T53 Meeting, Abu Dhabi, Oct. 29th 2017 Slide 7

danielneyerbrainworks

core® | the cybernetics of renewable energy and efficiency.

Measurement results – daily performance

» Hybrid heat pump operation of ACM & VCC

Set points: MT: 12/40°C; LT: 6/12°C

Operation if I >200 W/m²

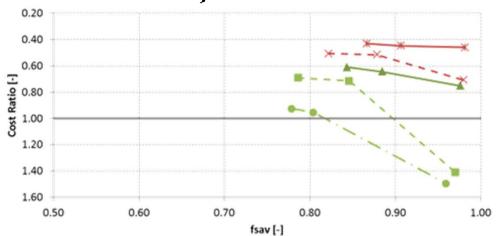
Location: Innsbruck ST: 70m², NO storage SPFel.sys: simplified

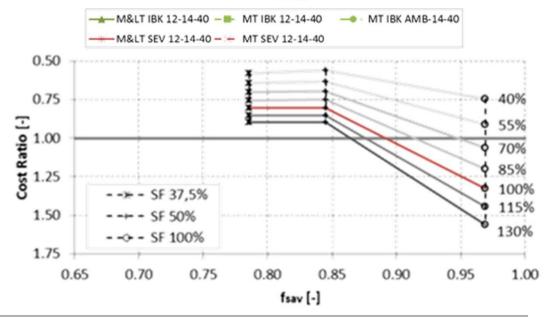
	Energies ACM [kWh]			Energies VCC [kWh]			ACM+VCC [kWh]		System SPFsys [-]			
									MT+LT		MT	
	Q_{HT}	Q_{LT}	Q _{MT}	Q _{MT}	Q _{LT}	Q_{el}	Q _{MT}	O _{LT}	SPF _{th}	SPF _{el.sys}	SPF _{th}	SPF _{el.sys}
sunny day	233	125	349	96	80	21	445	205	2,03	20,19	1,50	13,82
cloudy day	102	57	152	102	86	21	254	143	2,04	12,33	1,49	7,89

simulation results – potential study

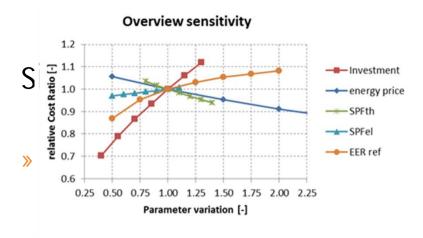
» HP system

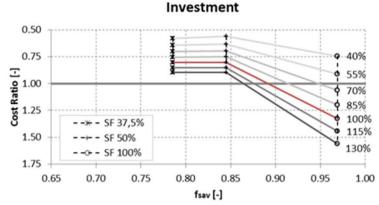
Set: MT: 12/40°C; LT: 6/12°C Solar thermal direct

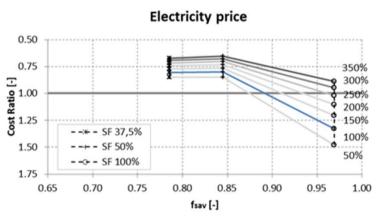

» Annual simulations Innsbruck & Sevilla w/o VCC

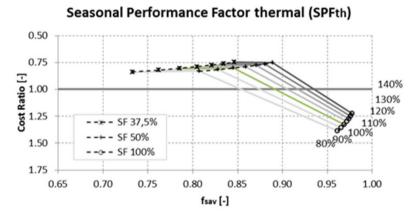


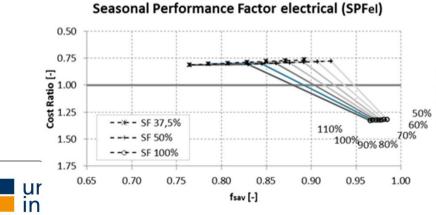
» CR << 1

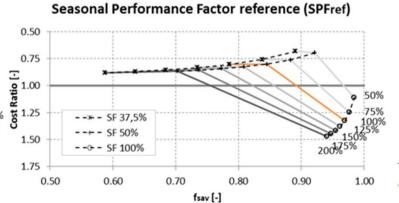

» Sensitivity analysis


Investment costs
Electricity prices
Electrical efficiency
Thermal efficiency
Primary Energy Conversion









Conclusion

» Components development

Possibility for solar / solar hybrid operation Good performance Further optimization potential

» System results

ST is more efficient and economic Solar direct & hybrid is promising

» Next step

Component optimization & demo project System integration → Building & HVAC

» Solar heating and cooling can become cost competitive

designed clever simple HVAC layouts, advanced control strategies and high efficient components.

Arbeitsbereich für Energieeffizientes Bauen

danielneyerbrainworks

core the cybernetics of renewable energy and efficiency.

Daniel NEYER

Universität Innsbruck Institut für Konstruktion und Materialwissenschaften

Arbeitsbereich Energieeffizientes Bauen Technikerstraße 13, 5. Stock, A-6020 Innsbruck

Telefon +43 512 507-63652 Mobil +43 512 507-976618 Fax +43 512 507-63698 E-Mail daniel.neyer@uibk.ac.at

danielneyerbrainworks

core the cybernetics of renewable energy and efficiency.

oberradin 50 6700 bludenz austria +43 664 28 26 529 daniel@neyer-brainworks.at www.neyer-brainworks.at