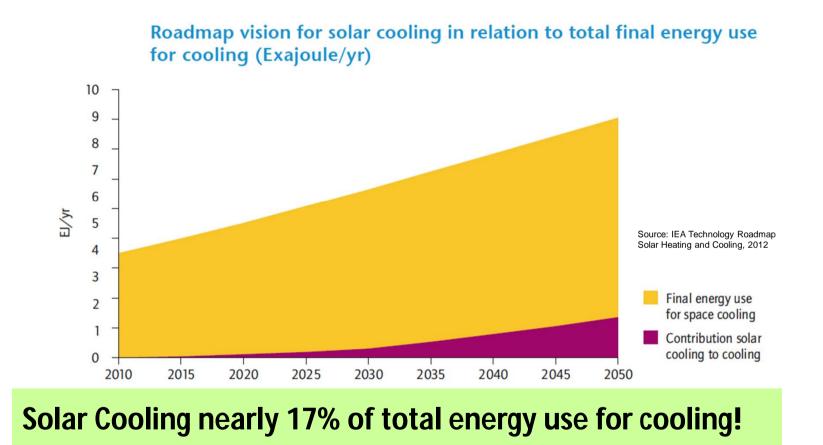


Keynote:

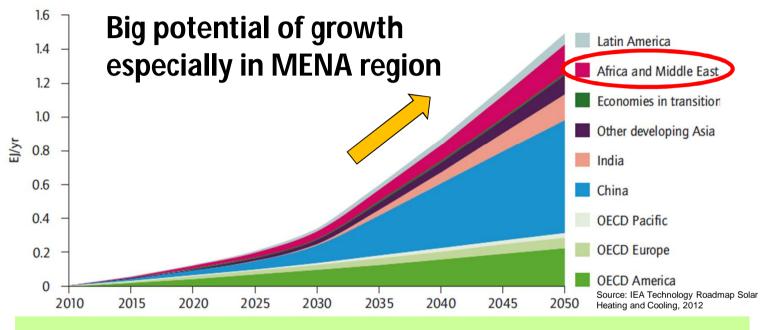
Solar Cooling potential in the MENA Region


Daniel Mugnier, Dr. Ing, TECSOL & IEA SHC Task 53 Opérating Agent Abu Dhabi, 31/10/2017

IEA Technology Roadmap SHC

Task 53 🎇

Share of solar cooling by 2050



IEA Technology Roadmap SHC – Market potential by 2050

Roadmap vision for solar cooling (Exajoule/yr)

 $1.5 \times 10^{18} \text{ J/a} = 416.7 \text{ TWh/a Solar Cooling by 2050}$

Systems could enter the market between 2015 and 2020

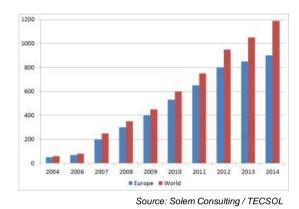
2 main channels in 2016 for Solar Cooling

CHILLER / AIR CONDITIONER

Solar thermal collector technologies & application for solar cooling

Solar thermal collector	Heat transfer medium	Collector temperature	Application for cooling	
Air collector	Air	40-60°C	Air-conditioning	20°C
Flat plate collector	Water, Water-Glycol	70-90°C	Air-conditioning, slab cooling	15°C
Evacuated tube collector	Water, Water-Glycol	90-120°C	Air-conditioning, slab cooling	0°C
Parabolic trough / Fresnel collector	Thermal oil, Water	120-250°C	Refrigeration, air-conditioning, slab cooling	-20°C

Source : JER



Solar cooling market trends in the World

Still a niche market :
 ≈ 1,200 systems installed
worldwide (2015)

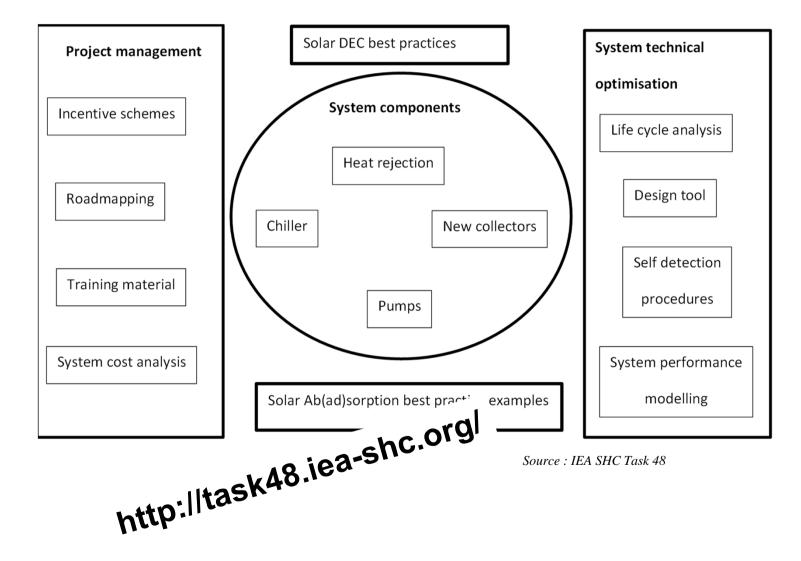
A High level of innovation still present :

www.iea-shc.org

IEA SHC Task 53

* Heat rejection * Electric consumersk53.iea-shc.orgl * kWh coc http://task53.iea-shc.org/ toon

Already very accurate concepts for Arabic countries

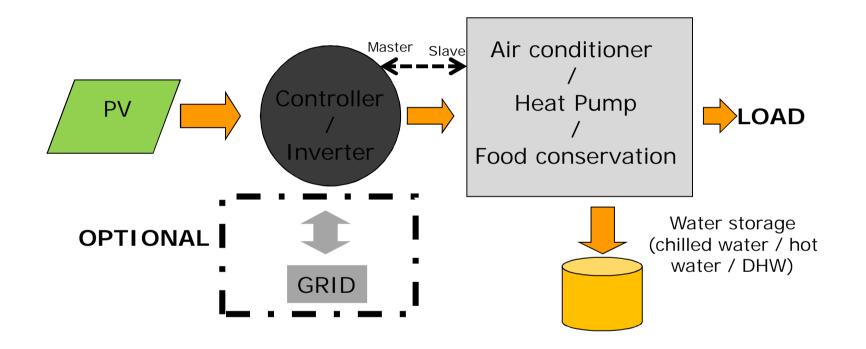

* low & medium temperature solar thermal absorption

* small size PV air-conditioning

Task 48 investigation results

Need of a new Generation solar cooling systems

Solar thermal « traditionnal » cooling has **difficulty to emerge as a economically competitive solution**


Main reasons :

- Technical : Limit on adaptability due to hydraulics, complexity
- **Economical** : High upfront cost, especially for small systems
- ⇒ Still need **intensive R&D** for quality improvment and best solution selection (ongoing IEA SHC Task 53)

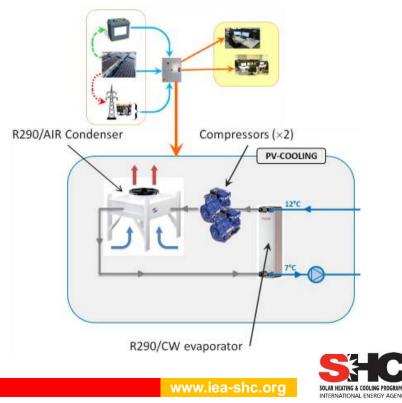
 \Rightarrow Very innovative concepts such...

Example of Basic concept for the PV approach

Main categories of PV cooling systems

Solar air conditioners : Splits

PV+ HP coupling for Office/Commercial


PV COOLING CONCEPT

PV + INVERTER + R290 « clean » chiller

Ready for the market via demos..

ATIS 15 Concept

Task 53 🎇

Conclusions on the State of the art

<u>Solar cooling</u> **highly needs innovations** : cost reduction, 30 years reliability and performance..

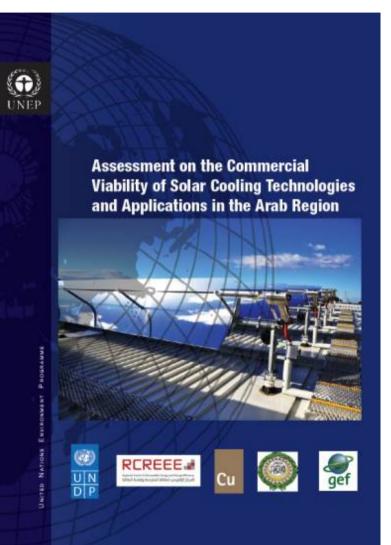
High stimulation from PV to solar thermal for small to medium cooling power range

High priority targets in term of markets :

- MENA region
- China
- Sun Belt

Very promising segments for solar thermal cooling with large system concepts

Study on solar cooling potential

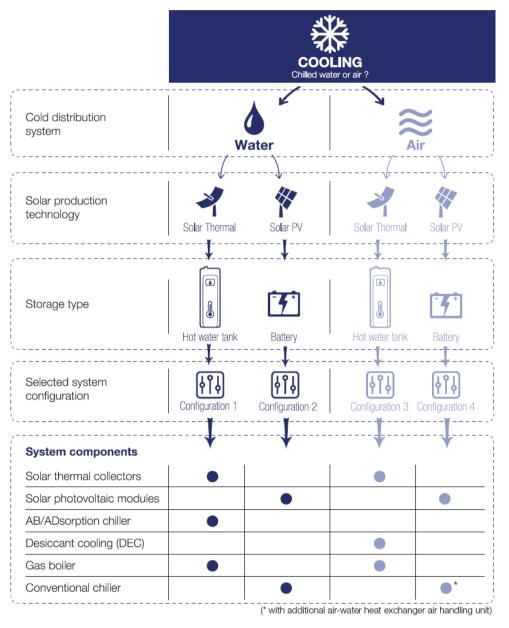


<u>Consultants :</u>

Qualitative assessment

* Target buildings in Arab region where solar cooling accurate \Rightarrow **a predominant daily cooling load**.

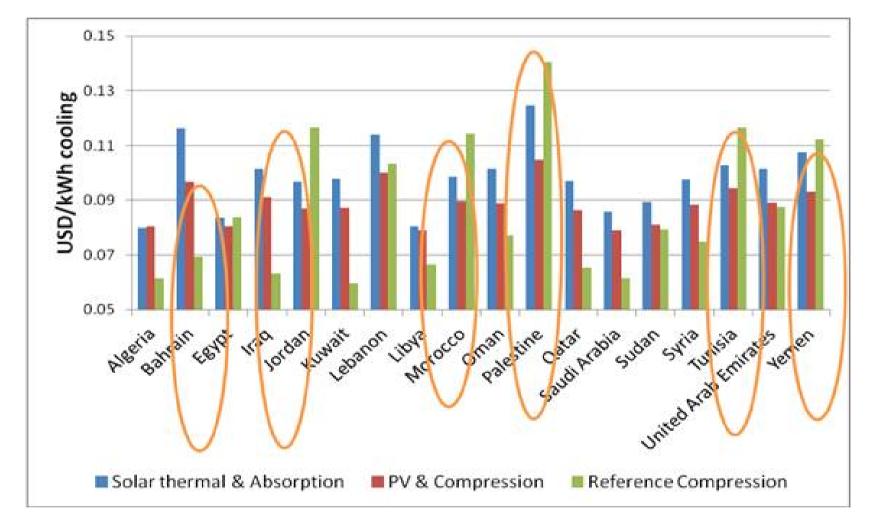
* For large spectrum of markets in the Arab region Solar cooling to be **very robust & simple to maintain in harsh hot & arid conditions**.


* As solar cooling technology is having high upfront costs, each produced kWh of cooling to be used in the best efficiency.

- * Study on developing the analysis of 2 driving technologies:
 - Solar thermal absorption cooling
 - Vapour compression scroll chiller and PV modules

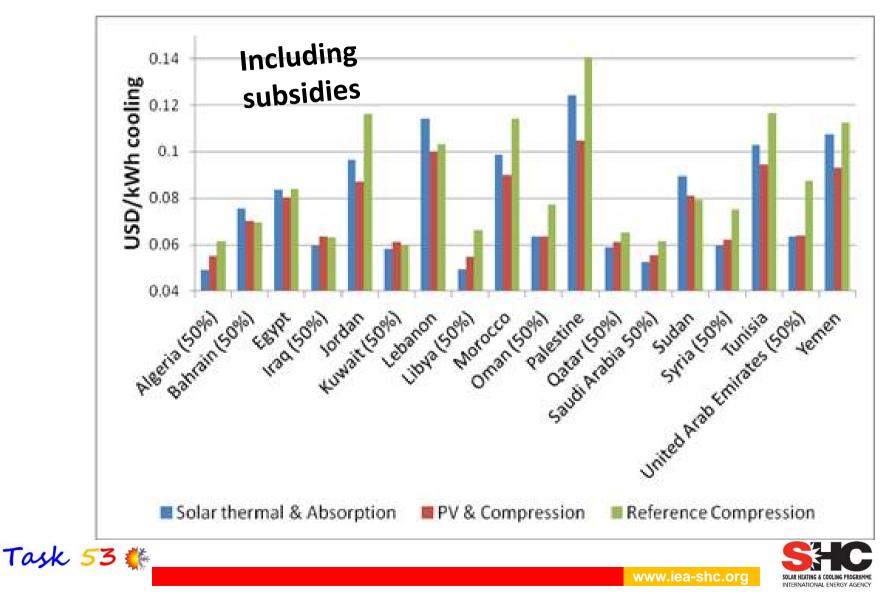
Solar cooling decision tree

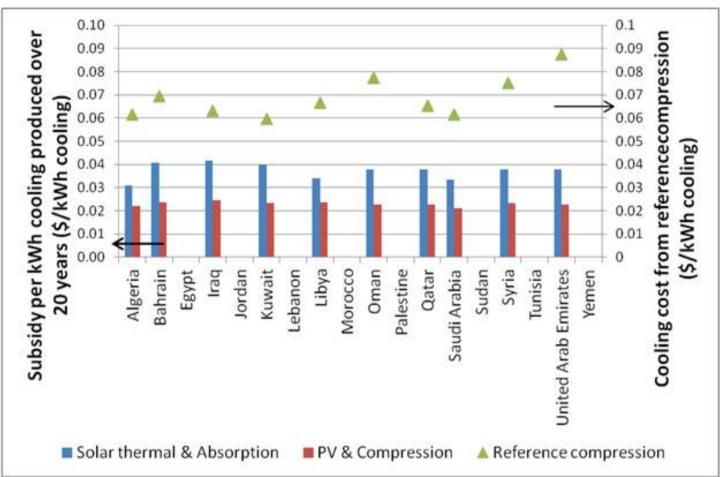
Economic analysis : hypothesis


	Global	Direct	PV yield,	Electricity	% of subsidy on	
	Horizontal Irradiation	normal Irradiation	(°20 tilt ; South)	cost for commercial	electricity tariff for commercial	Water cost
	kWh/m².y	kWh/m².y	(kWh/ kWp.y)	(cUSD/ kWh)		(USD/m³)
Algeria	1,970	2,700	1,600	4.2	78%	0.5
Bahrain	2,160	2,050	1,900	0.8	96%	8
Egypt	2,450	2,800	1,730	9.9	49%	0.4
Iraq	2,050	2,000	1,800	1.1	94%	0.05
Jordan	2,320	2,700	1,800	17	12%	1.47
Kuwait	1,900	2,100	1,900	0.7	96%	0.75
Lebanon	1,920	2,000	1,700	10.4	46%	1
Libya	1,940	2,700	1,700	5.5	71%	0.05
Morocco	2,000	2,600	1,700	16.1	16%	1.5
Oman	2,050	2,200	1,900	5.2	73%	2
Palestine	1,920	2,000	1,800	19.2	0%	1.2
Qatar	2,140	2,200	1,900	2.5	87%	1.4
Saudi Arabia	2,130	2,500	1,930	3.2	83%	1
Sudan	2,130	2,500	1,950	7.7	60%	0.3
Syria	2,360	2,200	1,800	5.1	74%	0.3
Tunisia	1,980	2,400	1,600	16	17%	0.6
United Arab Emirates	2,120	2,200	1,900	8	58%	0.6
Yemen	2,250	2,200	1,900	14	27%	0.3

Economical analysis of the 100 kW cooling segment

Levelized cost of cooling energy over 20 years & reference cooling cost for specific 12 countries




Economical analysis of the 100 kW cooling segment

Levelized cost of cooling energy over 20 years & reference cooling cost for specific 12 countries

Economical analysis of the 100 kW cooling segment

Level of subsidy per unit of cooling production over 20 years & reference cooling cost for specific 12 countries

It is far cheaper to subsidized solar cooling than oil or gas cooling !

Conclusion for 100 kW cooling segment

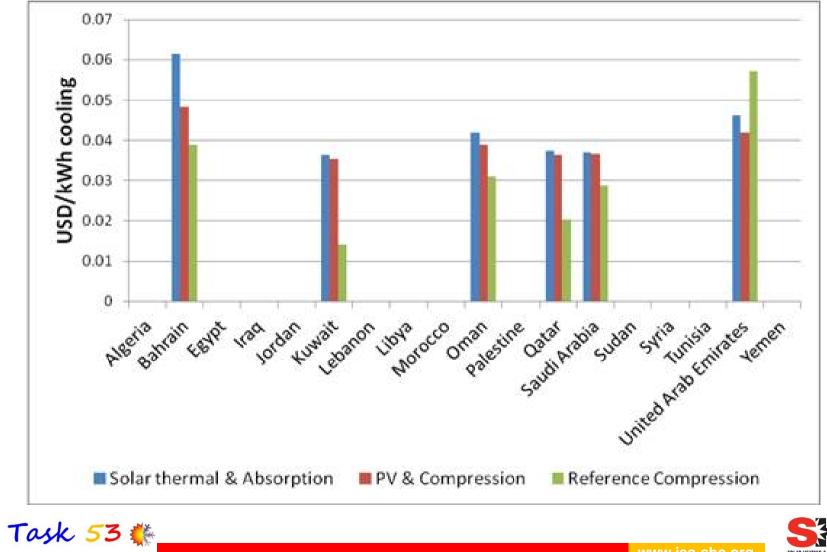
Compensation of the **important implied subsidy** by a ≈ equivalent subsidy on the upfront cost of solar cooling.

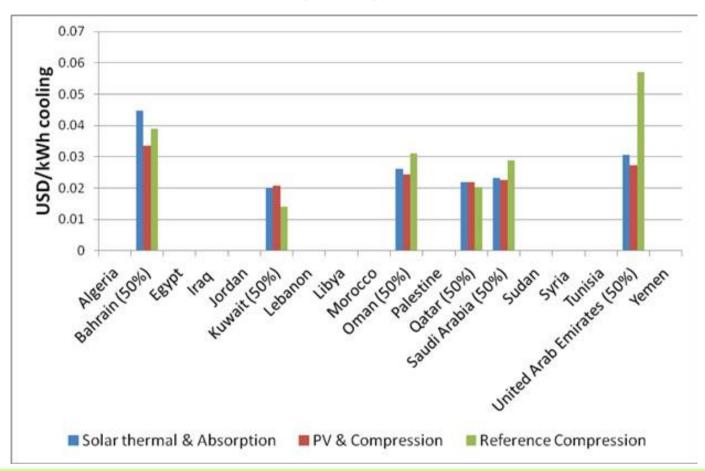
If **50% grant** on the capital cost **to increase the attractiveness** of the solar cooling systems

 \Rightarrow In all the countries of Arab Region the kWh cooling is lower over 20 years with solar cooling than with a conventional system.

Conclusion for 100 kW cooling segment

Egypt, Jordan, Morocco, Palestine, Tunisia and Yemen, where **the cost of solar cooling energy** is **lower over 20 years than for conventional cooling.**


In all cases, the PV Cooling solution is more competitive than the solar thermal one


Economical analysis of the 1 MW cooling segment

Levelized cost of cooling energy (without subsidies)

Economical analysis of the 1 MW cooling segment

Levelized cost of cooling energy (including subsidies)

Very Large production of solar thermal cooling is TODAY cost competitive if considered as a long term investment!

Conclusion for 1 MW cooling segment

In the UAE, solar thermal and solar PV Cooling already more interesting than the reference system over 20 years.

In the other countries and especially in **Kuwait**, **Qatar and Saudi Arabia**, solar thermal and solar PV cooling solutions are very close in term of NPC and more interesting than the reference system over 20 years if a subsidy of 50% is applied on the investment cost (≈ compensation of high level of implied subsidies of conventional cooling energy).

Cost reduction potentials on solar cooling

(by 2020-2025)

Task 53 👯

	Key indicator evolution	Cost reduction ratio	
Factor	<i>(difference between initial situation and new one)</i>	(reference : 2015, on investment)	
Sales scaling factor	x10 sales volume	15 to 30%	
Size scaling factor	x10 system size from 100 kW $_{c}$ to 1 MW $_{c}$	50 to 70%	
Packaging factor	Solar cooling prefabrication (kits of less than 30 kW _c)	30 to 40%	
Local company manufacturing factor	Manufacturing of the main components locally	5 to 10%	
	Arab region adapted solar production	10 to 30%	
Technical innovations factor	Heat rejection	on	
	Cooling storage	Net Present Cost	

Significant cost reduction potential thanks to R&D !

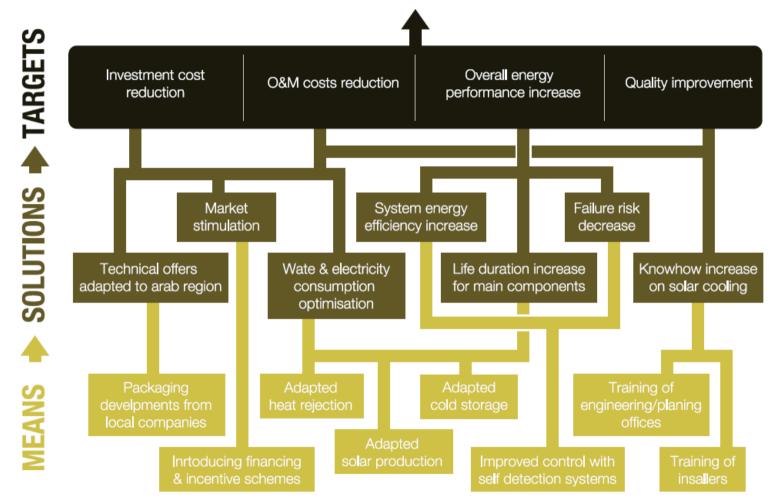
Budget proposal for R&D and demo program

Total budget required for the proposed R&D and demonstration programs : ≈ 4.5 million USD to develop solar cooling for Arab region:

- •Adapted heat rejection (1.0-1.5 million USD R&D program)
- Adaption of existing products/kits to Arab region (1.0 million USD R&D program)
- •Adapted storage (0.5-1.0 million USD R&D program)

•Two 100 kW PV Cooling demo systems (approx. 200.000 USD funding for one project)

• Two 1 MW Solar thermal cooling demo systems (approx. 600.000 USD funding for one project)



Solar Cooling Roadmap proposal

Task 53 👯

Global cost reduction and competitiveness

Conclusions

- * It is time for solar cooling !
- * Innovation <u>must</u> mix International and arabic countries expertise
- * Next steps in 2017-2018 :
 - International collaborations (EU, IEA, UNEP, ..)
 - Mission Innovation?
 - R&D programs
 - Demonstrations projects

Accelerating the Clean Energy Revolution

Thanks for your attention !

<u>Contact</u> : Daniel Mugnier daniel.mugnier@tecsol.fr

Task 53 👯