

Keynote zur solaren Kühlung und SHC Task 53 ... in English

ISEC Conference

October 3rd, 2018

Daniel Mugnier (TECSOL / IEA SHC Chair / Task 53 Operating Agent)

Content

- Background
- Solutions & trends
- Best practice examples
- Summary

• K-CEP: a philanthropic program to support the Kigali Amendment of the Montreal Protocol.

Background

- Global cooling demand is growing due to
 - Global economy, population growth
 - Climate change
 - OECD/IEA (2018): The Future of Cooling....
- Several initiatives and policies on cooling
 - F-gas regulation
 - COP 21 (Paris Agreements)
 - Sustainable Development Goal #7
 - Mission innovation: challenge #7
 - Chinese government ... 2% goal for solar thermal cooling within 2020

The Future of Cooling - Implications & opportunitiesenergy efficiency (IEA)Reference scenario

On current trends, energy needs for space cooling – almost entirely in the form of electricity – will more than triple between 2016 and 2050, driven mainly by the residential sector (2 000 TWh => 6 000 TWh)

• Most of the projected growth in energy use for cooling is set to come from India, China and other emerging economies.

• Space cooling is set to overtake appliances and plug loads to become the

single largest user of electricity in buildings (2015:10%; 2050: 30%) and the second largest electrical end use after industrial motors.

• The share of cooling in electricity demand increases everywhere bar

ECSO

China and most notably in India and Brazil, where the potential for increased use of air conditioners is greatest.

Future cooling demand

- OECD/IEA efficiency scenario
 - Component level: SEER 8.5 by 2050
 - Measures on building level are possible but limited...

Vision for solar cooling – Roadmap until 2050

Source: OECD/IEA (2013) Solar heating Roadmap

Possible Solutions

• Several solar supported solutions are available

TECSO

9

Status of solar cooling

- Components are available but
 Still a niche market :
 ≈ 1,350 systems installed worldwide (2015)
- On system level there is still lack of

- efficient, reliable and cost competitive SHC solutions
- Technical : Limit on adaptability due to hydraulics, complexity
- Economical : High initial investment cost, especially for small systems

ECSO

- Huge potential for innovation
 - Heat rejection / electric consumption / costs
 - \rightarrow new generation of PV and ST SHC

Current trends

- **Compact** (small scale) solar air conditioning units with **air- cooled** aband adsorption **chillers**
- **x.N stage chillers** (half, single, 1.N, double, triple) with (new) middle temperature collectors
- Small scale and large multi stage **desiccant systems** with solar thermal collectors or desiccant coated components
- Thermal driven **heat pump systems for heating and cooling**, also in **hybrid** operation with vapor compression chillers
- PV & inverter controlled **split units**
- (Small size) PV driven components with new HP/chillers with natural refrigerants

Innovative companies

• Overview by IEA SHC Task 53

Logo	Manufacturer, country	Market status	Service	Solar input type	Nominal cooling capacity (kW or m ³ /h)	Nominal heating capacity (kW)	Nominal solar input (Wp for PV and m ² for ST
ATISYS concept	ATISYS, France	R&D	Cooling/ heating	PV	4 kW	5.1 kW	4.6 kW
🕒 ClimateWell	CLIMATEWELL, Sweden	R&D	Cooling/ heating/DHW	ST	40 kW	108 kW	180 m^2
	FREECOLD, France	Commercial	Cooling	PV	2.5 kW	No heating	1.5 kW
freescoo	FREESCOO, Italy	R&D	Cooling/ heating	ST/PV	500 m³/h	1.44 kW	2.4 kW
GREEK	GREE. China	R&D	Cooling/ heating	PV	33.5 kW	37.5 kW	12.2 kW
Kaysun Kaysun	KAYSUN, Spain	Commercial	Cooling/ heating	PV	3.5 kW	3.5 kW	0.7 kW
PULIX	PURIX, Denmark	Commercial	Cooling/ heating	ST	2.5 kW	3.6 kW	4.8 m^2
Senr	SENR, France	Commercial	Cooling/ heating	PV	3.6 kW (split) 45 kW (VRF)	3.6 kW (split) 50 kW (VRF)	0.65 kW (split) 20 kW (VRF)
SolabCool Relationships where	SOLABCOOL, Netherlands	R&D	Cooling/ heating	ST	4.5 kW	8 kW	13.3 m ²
🔫 YAZAKI	YAZAKI, Japan	R&D	Cooling/ heating	ST	35 kW	60 kW	0.1 kW

SOLABCOOL (NL) 4,5 kWc

Sunsyster

no claim for completeness!

SOLAR HEATING & CODLING PROGRAMME INTERNATIONAL ENERGY AGENCY

www.iea-shc.org

12

PV COOLING project

ATIS **15**concept

- PV + INVERTER
 + R290 chiller
- Self consumption > 80%
- fully autonomous systems possible
- EERsol 25-100
- Ready for the market via demos..

TECSO

Task 53 👯

Compact DEC-system

freescoo

Freescoo is an innovative solar DEC air conditioning concept designed for **ventilation**, **cooling**, **dehumidification** and **heating** of buildings in

residential and tertiary sectors

- Use of the Cooled Packed Bed (CPB) technology and high efficiency evaporative cooling concepts
- Low grade solar heat (50-60°C) to drive the cooling process
- High global electrical efficiency (Typical EER >10)
- Preassembled and ready to be installed
- Cooling capacity 2,5 kW, scalability possible
- Selected for the Brochure 2018 of the EeB PPP Promising Technologies

Freescoo is a patented solution by the startup company

SOLARINVENT

Hybrid concepts

• SolarHybrid by

- Prototypes in Hardware-in-the-Loop & simulation study
 - 20 kW NH3/H20 absorber
 - 20 kW NH3 vapor compression
- Solar direct driven absorber
 + complementing compressor
 - Primary Energy Savings up to 80 %
 - CR < 1 possible

www.iea-shc.org

TECSO

Task 53 👯

x.N Chillers

Fresnel Solar Collector + 1.N effect absorption chiller

@ Shanghai Jiao Tong University, Prof Dai

Large Scale SHC

	United World Collage (UWC)	Desert Mountain High School (DMHS)	Hospital Managua (MANAGUA)
Commissioned	2011	2014	2017
Location	Singapore	USA, Arizona	Nicaragua
Collector Area	3872 m²	4935 m²	4450 m²
Cooling Capacity	1475 kW	1750 kW	1023 kW
Domestic Hot Water	Yes	No	Yes
Climate	Tropical Rainforest Climate	Desert Climate	Tropical Wet and Dry Climate
Solar conversion factor Specific cost		2011 to 2017 2011 to 2017	+ 36% - 71%

www.iea-shc.org

Successful design

- Summary of experiences / lesson's learned
 - General findings → 10 key principles
- The Solar Cooling Design Guide,
 - Case Studies of Successful Design
 - 3 examples
- Scientific background
 - Solar Energy Paper
 - Literature in context of Task48
 - Recent literature review
 - Expert survey

Assessment

- Solar cooling and heating can be **complex**
 - Solar Thermal or Photovoltaic driven
 - System design & configurations (backups, storages,...)
 - Demands (domestic hot water, space cooling, ...)

→ Assessment in a common comparable format

• energetic, ecological, economic, evaluation

\rightarrow T53E4 Assessment Tool

- Assessment based on (monthly) energy balances
- Measured or simulated (sub) system
- Data base for Technical and Economic assessment

Main driving future for solar cooling...

MISSION INNOVATION

Accelerating the Clean Energy Revolution

Linked with Mission Innovation Challenge #7 Affordable Heating & Cooling for Building Innovation

Statement : Cooling is one of the major energy need increase worldwide and except solar, no renewables are really competing

The future market is essentially in the Sunbelt : MENA, India, Asia, Africa, America, Oceania

IEA SHC Countries own a real knowhow on solar cooling but the "mistake" was to imagine to develop solutions for IEA SHC countries

A "technology-transfer" collaborative Work/Task is more than ever needed

Study on solar cooling potential

Consultants :

Assessment on the Commercial **Viability of Solar Cooling Technologies** and Applications in the Arab Region

www.iea-shc.org

25

Qualitative assessment

* Target buildings in Arab region where solar cooling accurate \Rightarrow **a predominant daily cooling load**.

* For large spectrum of markets in the Arab region Solar cooling to be **very robust & simple to maintain in harsh hot & arid conditions**.

* As solar cooling technology is having high upfront costs, each produced kWh of cooling to be used in the best efficiency.

- * Study on developing the analysis of 2 driving technologies:
 - Solar thermal absorption cooling
 - Vapour compression scroll chiller and PV modules

Economic analysis : hypothesis

	Global	Direct	PV vield	Electricity	% of subsidy on	
	Horizontal	normal Irradiation	(°20 tilt ; South)	cost for commercial	electricity tariff for commercial	Water cost
	kWh/m².y	kWh/m².y	(kWh/ kWp.y)	(cUSD/ kWh)		(USD/m³)
Algeria	1,970	2,700	1,600	4.2	78%	0.5
Bahrain	2,160	2,050	1,900	0.8	96%	8
Egypt	2,450	2,800	1,730	9.9	49%	0.4
Iraq	2,050	2,000	1,800	1.1	94%	0.05
Jordan	2,320	2,700	1,800	17	12%	1.47
Kuwait	1,900	2,100	1,900	0.7	96%	0.75
Lebanon	1,920	2,000	1,700	10.4	46%	1
Libya	1,940	2,700	1,700	5.5	71%	0.05
Morocco	2,000	2,600	1,700	16.1	16%	1.5
Oman	2,050	2,200	1,900	5.2	73%	2
Palestine	1,920	2,000	1,800	19.2	0%	1.2
Qatar	2,140	2,200	1,900	2.5	87%	1.4
Saudi Arabia	2,130	2,500	1,930	3.2	83%	1
Sudan	2,130	2,500	1,950	7.7	60%	0.3
Syria	2,360	2,200	1,800	5.1	74%	0.3
Tunisia	1,980	2,400	1,600	16	17%	0.6
United Arab Emirates	2,120	2,200	1,900	8	58%	0.6
Yemen	2,250	2,200	1,900	14	27%	0.3

www.iea-shc.org

28

Economical analysis of the 100 kW cooling segment

Levelized cost of cooling energy over 20 years & reference cooling cost for specific 12 countries

Economical analysis of the 100 kW cooling segment

Levelized cost of cooling energy over 20 years & reference cooling cost for specific 12

countries

TECSO

INTERNATIONAL ENERGY AGENC

30

Economical analysis of the 100 kW cooling segment

Level of subsidy per unit of cooling production over 20 years & reference cooling cost for specific 12 countries

It is far cheaper to subsidized solar cooling than oil or gas cooling !

www.iea-shc.org

Conclusion for 100 kW cooling segment

Compensation of the important implied subsidy by a≈ equivalent subsidy on the upfront cost of solar cooling.

If **50% grant** on the capital cost **to increase the attractiveness** of the solar cooling systems

 \Rightarrow In all the countries of Arab Region the kWh cooling is lower over 20 years with solar cooling than with a conventional system.

Conclusion for 100 kW cooling segment

Egypt, Jordan, Morocco, Palestine, Tunisia and Yemen, where **the cost of solar cooling energy** is **lower over 20 years than for conventional cooling.**

In all cases, the PV Cooling solution is more competitive than the solar thermal one

Cost reduction potentials on solar cooling

(by 2020-2025)

Key indicator evolution	Cost reduction ratio	
(difference between initial situation and new one)	(reference : 2015, on investment)	
x10 sales volume	15 to 30%	
x10 system size from 100 kW $_{\rm c}$ to 1 MW $_{\rm c}$	50 to 70%	
Solar cooling prefabrication (kits of less than 30 kW _c)	30 to 40%	
Manufacturing of the main components locally	5 to 10%	
Arab region adapted solar production	10 to 30%	
Heat rejection	on	
Cooling storage	Net Present Cost	
	Key indicator evolution(difference between initial situation and new one)x10 sales volumex10 system size from 100 kWc to 1 MWcSolar cooling prefabrication (kits of less than 30 kWc)Manufacturing of the main components locallyArab region adapted solar production 	

Significant cost reduction potential thanks to R&D !

34

www.iea-shc.org

Summary & findings

• Future cooling demand is rising

- Efficiency of conventional components will increase
- Solar Cooling is needed to complement
- Several component developments are ongoing
 - Already some promising solutions
 - ST in large scale applications / hybrid operation
 - PV in **small scale** with vapor compression chillers & natural refrigerants

Summary & findings

- System improvement / best practice is needed
 - quality procedures for design, commissioning, monitoring and maintaining
 - **pre-engineered** systems for the medium capacity range
 - R&D efforts to further improve solar cooling at system level for specific applications / demands (cooling, DHW, (pre-)heating)
- **Performance** of SHC examples
- Economics are Both technologies (PV*ST) can be optimized Development ... • Development w • Cost competitiveness ared • Development w • Cost conternations area • Cost con

Thank you for your attention!

www.iea-shc.org

