

Solar Concepts and monitoring results of buildings with high solar thermal fraction in Austria

DI Walter Becke

AEE – Institut für Nachhaltige Technologien (AEE INTEC) 8200 Gleisdorf, Feldgasse 19, AUSTRIA

www.aee-intec.at

AEE – INSTITUT FÜR NACHHALTIGE TECHNOLOGIEN

AEE INTEC

Content

Boundary conditions to reach high solar thermal fractions heat demand suitable areas storage capacity

system concepts for high solar thermal fractions

Monitoring results

Conclusion

Boundary conditions - heat demand

Optimisation before realisation!

Requirements for subsidy program: Spec. Heating demand < 45 kWh/m²a

All buildings planned for at least 70% solar fraction of DHW and heating

Data basis: 37 single family houses with accompanying research

Boundary conditions – suitable solar active areas

www.aee-intec.at

AEE – INSTITUT FÜR NACHHALTIGE TECHNOLOGIEN

Boundary conditions – storage capacity

AEE INTEC

Source: building owner

www.aee-intec.at

AEE – INSTITUT FÜR NACHHALTIGE TECHNOLOGIEN

readily available: buffer storage (water) & TABS

Data basis: 37 single family houses with accompanying research

Two main system/storage concepts for buildings with high solar fraction

System concept "A"

Traditional large water storages

- 57 plants
- 19 plants with accompanying research
- Water Storage Volume
 - 3 to 90 m³
 - specific: 60 to 2600l/m_{coll}²

System concept "B"

Thermal activation of building mass (ceilings, foundation)

- 48 plants
- 21 with accompanying research
- Storage Volume (specific: 60 to 510 l/m_{coll}²)
 -Water storage Volume
 0.8 to 2 m³
 - -Concrete Storage Volume 20 to 148m³ (1.2 to 9 m³ water equ.)

Principle of using building mass as storage

Zeit

Advantages of TAB's:

- Consequent reduction of the water storage volume
- Cost reduction (storage, enclosed space)
- Increased solar yields due to low temperatures (<40°C)
- Reduction of storage losses
- Use as heat delivery system
- Load management between building mass and auxiliary heating system reduces peak load
- Solar coverage ratios of between 50 and 90%.

T_{Aulien} T_{innen OG}

Tinnen UG EHeizstab

DHW

rmwass

1,200 I

Solar thermal

System concepts to achieve high solar fraction Thermal activated building masses

Wohnraumofen

Auxiliary heating

Single family house 84% solar fraction

<u>Direct</u> connection with solar circuit
→ No extra heat exchanger
→ (very) low usable solar temperatures

At the expense of

- no auxiliary heating of the TABS
- Copper tubes recommended

www.aee-intec.at

BTA OG

TBTA OG Ken

TRA OG OF

BTA UG

TBTA UG Kerr

TBTA UG OF

BTA U_UG

TBTA U UG

BTA UG ext

T BTA UG

BTA OG ext

TABS

AEE – INSTITUT FÜR NACHHALTIGE TECHNOLOGIEN

Room heating

Tofeo R

DØ

Monitoring results operation temperatures

AEE INTEC

System concepts to achieve high solar fraction Thermal activated building masses

Indirect connection with solar circuit

- → System integration similar to floor heating
- → Plastic tubes possible
- → Heating and cooling

At the expense of

- Lower solar yield due to higher temperature differences (heat exchanger)

Event hall 97% solar thermal fraction, PV plant

Carpentry 79% solar thermal fraction, 50 kWp PV

Sports hall 55% solar thermal fraction 100 kWp

www.aee-intec.at

AEE – INSTITUT FÜR NACHHALTIGE TECHNOLOGIEN

Monitoring results – single family houses heat demand

www.aee-intec.at

Monitoring results Room temperatures

Buffer

Single family houses

median [°C] 25 Average measured 24 Roomtemperature 57 10 10 10 10 room temperatures 23,3°C Simulation Temperature 20°C Jan 17 ap18 an21 ap21 an20 ap20 Monitoring start كى يونى ما يون

27

1482 1483 1481 1488

TAB

www.aee-intec.at

AEE INTEC

Conclusion

- A variety of hydraulic concepts are possible to achieve solar thermal fractions above 80%
- Big buffer storages are a known and reliable technology (disadvantage: space requirement)
- Through the use of TABS
 - the collector can be operated more efficiently
 - the buffer storage volume can be significantly reduced
 - Passive/free cooling becomes possible
- The storage capacity of TABS depends on the permitted temperature range
- The actual heat consumption is usually higher than the forecast increased consumption for space heating, reduced consumption for hot water
- Good understanding and knowledge of boundary conditions leads to successful projects

AEE – Institute for Sustainable Technologies (AEE INTEC) 8200 Gleisdorf, Feldgasse 19, Austria Walter Becke w.becke@aee.at

Website: www.aee-intec.at Twitter: @AEE_INTEC