

Industry workshop, Oct 9th, 2023

"Solar energy supply concepts for buildings and districts in an international context"

Solar energy supply concepts for buildings and districts

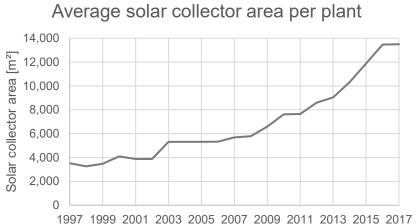
Elsabet Nielsen, Technical University of Denmark, DTU Email: elsa@dtu.dk

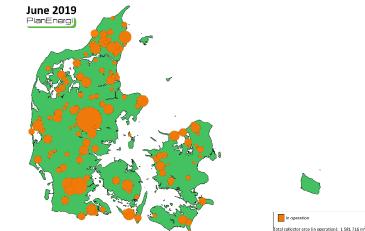
Solar heating plant - principle

Heat exchanger On O Consumers Solar collector field 00000 00000 **District heating** boiler plant

Solar district heating plants in the World by end of 2022:

- Chalmers University of Technology, SE, Sabine Putz - IEA SHC


Task 55, AT, Bärbel Epp - solrico.com, DE9.


80N World Solar Energy Map 2200-2500 571 solar heating plants > 500 m². 123 in Denmark, 22% 1908-2200 60N 1600-1900 1300-1600 1000-1300 • 3,100,000 m² in operation. 1,606,591 m² in Denmark, 52%! 700-1000 400-700 Tropic of Cancer solar irradian 20N in kWh/m² Denmark 20S Tropic of Capri **40S 60S** Large-scale systems for solar district heating Collector area, Capacities installed and number of systems by country (2022) 600.000 100.0 90.0 500.000 Ξ Collector area [m²] 80.0 systems [MW_{th}] 70.0 400.000 60.0 Capacity 51 Number of 300.000 50.0 40.0 34.1 200.000 30.0 28.1 23.5 **25.4** 23 20 20.0 100.000 12.5 11.4 ٠ 10.0 2.8 8 8 6.6 ٠ 7.5 4.5 0.8 0 0.0 NHO В Å SAU Я £ z Asia cl. China F ¥ OTH European ᆸ H USA / CAN ZAF Û a Collector area [m²] ◆Capacity [MW₁] ■Number of systems [-] Figure 9: Large-scale systems for solar district heating - capacities and collector area installed and number of DK: Collector area: 1,606,591 m² CHN:: Collector area: 571,464 m² systems by the end of 2022 Capacity: 400 MW Capacity: 1,124 MW., Data sources: Daniel Trier - PlanEnergi, DK, Jan-Olof Dalenbäck Number of systems: 123 Number of systems: 67

www.iea-shc.org

Solar heating plants in Denmark

Corresponds to about 1% of Denmark's total yearly energy consumption

Solar heating plants

2013: Dronninglund 37,573 m²

2012: Marstal 33,365 m²

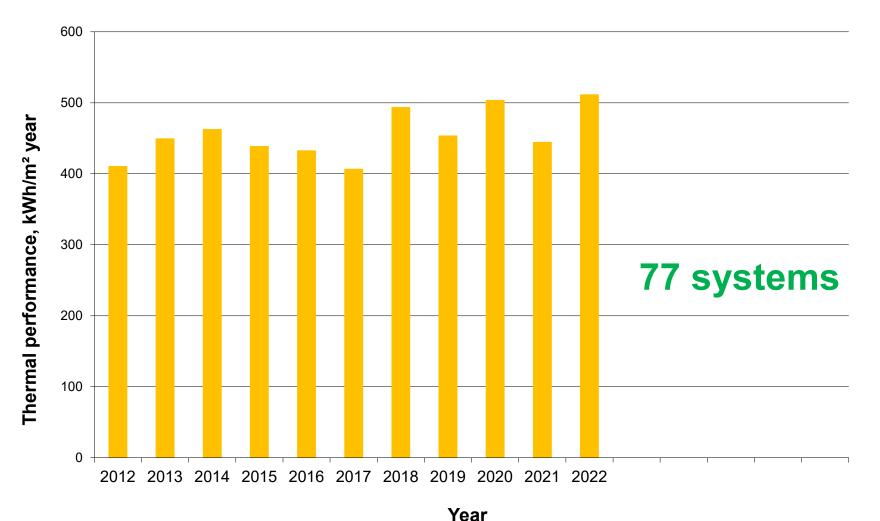
2015: Vojens 70,000 m²

2016: Silkeborg 156,694 m²

Flat plate solar collectors from GreenOneTEC, Austria

Collectors with foil between absorber and glass Collectors without foil between absorber and glass

www.iea-shc.org



- © Easy installation
- Seasy start up
- © Simple piping with low heat loss and low heat capacity
- ☺ Cheap and reliable
- © Few employed

Average yearly thermal performance for Danish solar heating plants

Measured yearly thermal performances and solar radiation - summary

- Thermal performance: 313 638 kWh/m² collector
 Average thermal performance: 407 512 kWh/m² collector
- Solar radiation on collectors: 843 1625 kWh/m²
 Average solar radiation on collectors: 1101 1246 kWh/m²
- Utilization of solar radiation: 26 58%
 Average utilization of solar radiation: 36 45%

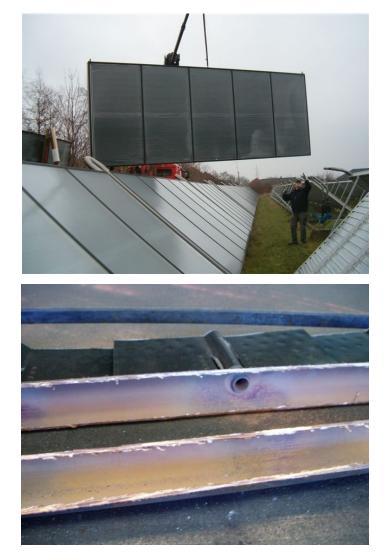
Lifetime for solar collectors

Investigations:

 13 and 15 years old solar collectors from solar heating plants investigated

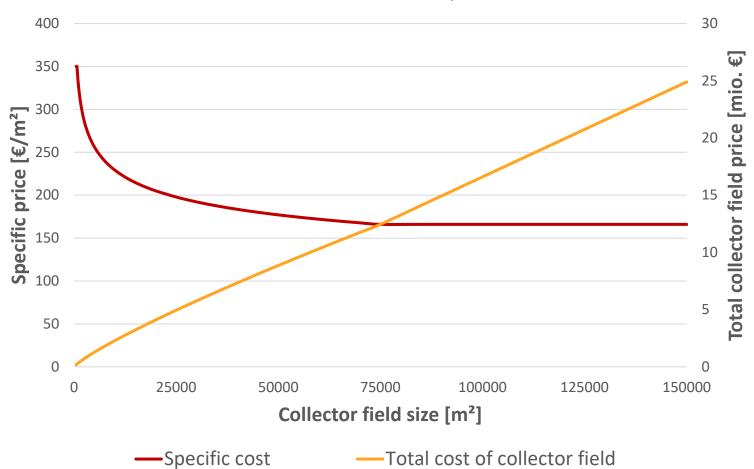
Conclusions:

• Reduced thermal performance after about 15 years of operation mainly due to wrong installation of the foil:


40°C: About 2%

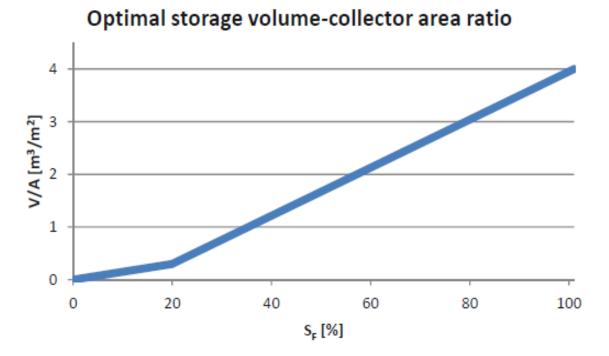
60°C: About 10%

80°C: About 25%


☺ Life time of solar collectors: > 30 years!

Solution Solution

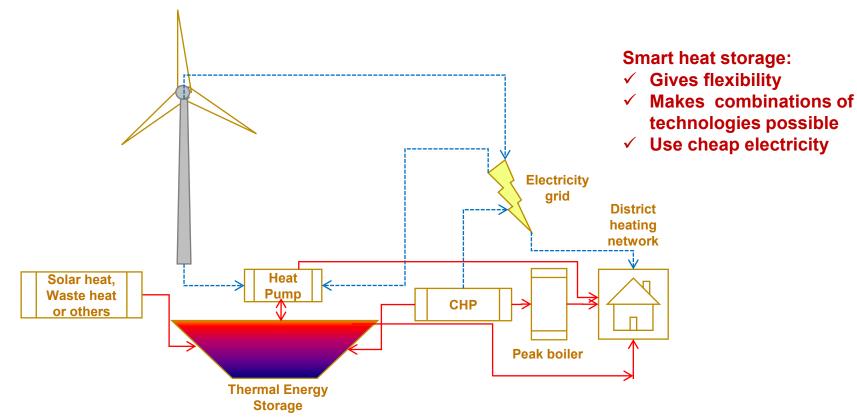
Investment cost per m² collector


Solar collector field price

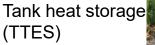
How large heat stores are needed?

Solar fraction (SF): Solar heat produced/total production of the entire heating plant $SF = Q_{solar output} / Q_{total, production}$

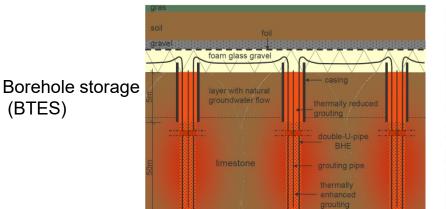
In Denmark, SF>20% can be achieved if long-term heat storage is installed

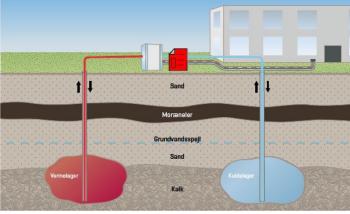


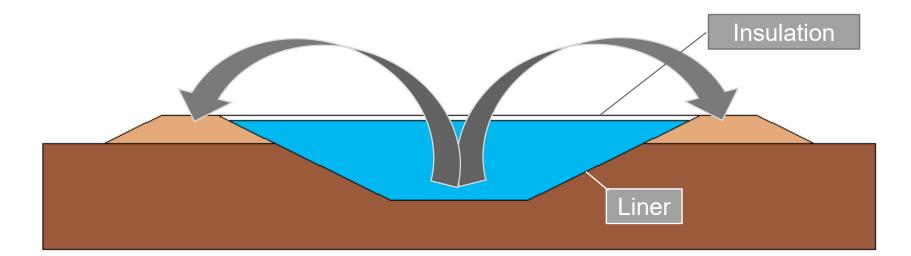
Especially for large SF - and if combined with a heat pump - the storage volume should be determined with detailed calculations/simulations.


The benefit of a smart heat storage

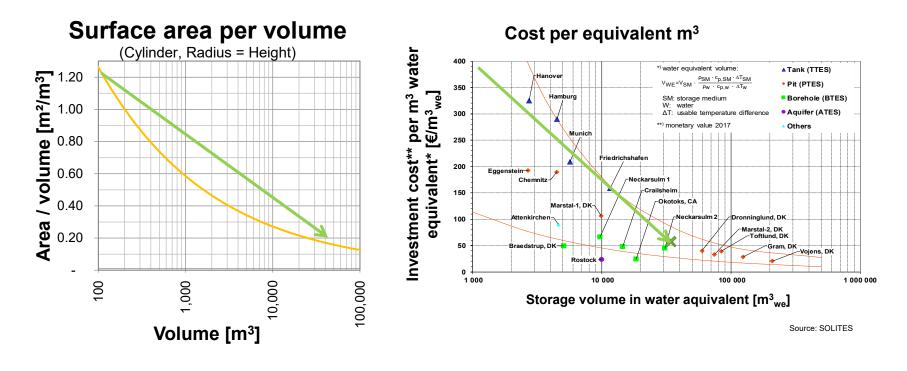
Combined renewable technologies and smart heat storage interacting with the electricity grid ...




Different types of heat storages for district heating



Aquifer storage (ATES)


Design of the water pit storage Shape and soil balance

The soil excavated from the bottom part of the storage is used as embankments around the upper part of the storage.

Thermal energy storage: Big is beautiful

 $1.2 \rightarrow 0.1 \rightarrow$ Factor 12 on surface area/volume (heat loss/storage capacity)

 $400 \rightarrow 40 \rightarrow$ Factor 10 on costs/volume (cost/storage capacity)

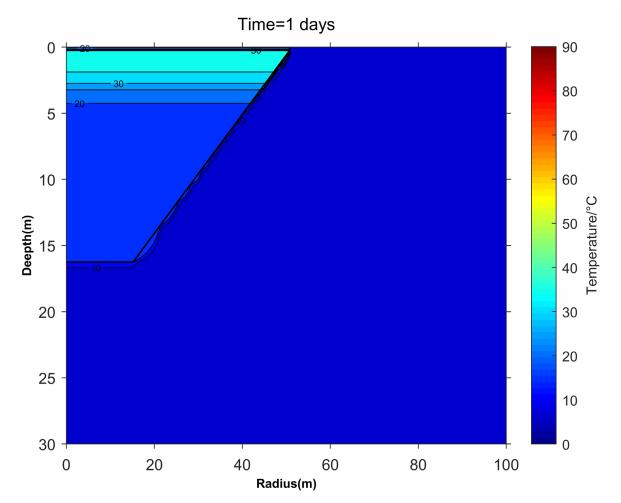
Existing water pit heat storage (PTES) in Denmark

Characteristics

- Seasonal heat storage
- Connected to solar thermal collector field
- Storage operation
 - Direct supply to DH
 grid
 - Source of heat pump
- Efficiencies of PTES
 vary from 60 90%

Construction of the PTES in Dronninglund

Charge /discharge of the PTES in **Dronninglund**



2500 2500 charging PTES 2000 2000 direct discharging PTES discharging PTES via HP 1500 1500 1000 1000 500 500 Heat [MWh] Heat [MWh] 0 0 -500 -500 -1000 -1000 -1500 -1500 -2000 -2000 -2500 -2500 Dec 2015 1212015 13120x5 400 2015 Harden by 2015 Harden Intons RUBANS GRADIS OCTORS ROADS

Pit storage | energy balance 2015

Temperatures in and around the PTES in a year calculated using TRNSYS

Measurements for water pits for solar heating plants

	Water pit storage, Marstal	Water pit storage, Dronninglund	Water pit storage, Gram
Size	75000 m ³ water	62000 m ³ water	110000 m ³ water
Maximum storage temperature	90°C	90°C	90°C
Heat recovered from heat storage during first year	18%	78%	55%
Heat recovered from heat storage during second year	65%	90%	50%
Heat recovered from heat storage during third year	66%	91%	50%
Heat recovered from heat storage during fourth year	66%	96%	42%
Heat recovered from heat storage during fifth year	39%	85%	

Water pits - challenges

- Floating lid water in insulation
- Removal of rainwater from the top of lid
- Water quality/corrosion/lifetime
- Liner/lifetime
- Construction
- Inlet arrangement
- Optimal operation

What is important?

Temperature level of district heating system low – for decreasing temperature the thermal performance is increasing

Before investing in a solar heating plant:

- Optimize the existing energy production units
- Focus on consumer installations low return temperature is of vital importance for high thermal performance of a solar heating plant

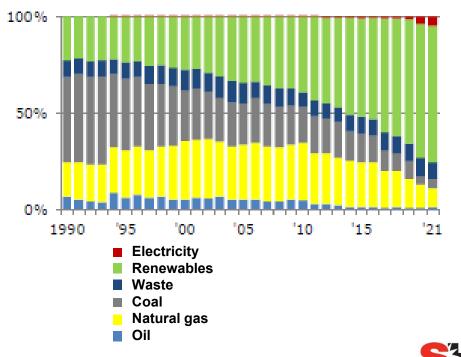
What is optimal size?

Depends on your focus

- Highest performance/m²: 2-5% solar fraction
- Highest solar fraction with existing production system/heat storage: 15-20% solar fraction
- Highest solar fraction achieved until today: 40-45% solar fraction long term heat storage needed
- Remember the interplay with the whole energy system

Future

The first % is the most difficult to achieve

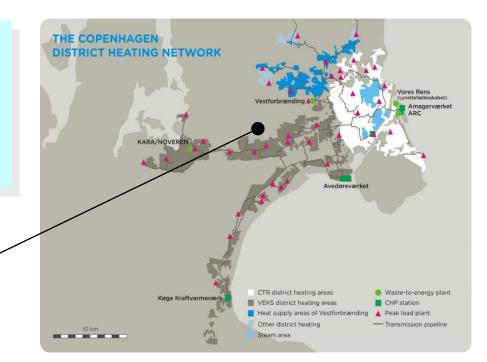


Reasons for rapid growth of Danish solar heating plants

- Ambitious Danish energy plan. By 2050, independent of fossil fuels
- A lot of district heating. Today 66% of all Danish buildings are heated by district heating
- Low temperature levels in district heating systems. A typical forward temperature to towns is about 80°C and a typical return temperature from towns is about 40°C
- Solar heating plants considered as energy saving measure used to achieve local energy saving targets
- District heating companies often nonprofit cooperatives
- High taxes for fossil fuels. Typical tax is about 0.035 euro/kWh produced heat
- Decentralized energy supply system
- High share of wind energy for electricity production. In 2022, 53% of the Danish electricity consumption was produced by wind turbines.
- Low costs for marketed solar collector fields installed on the ground, about 150 euro/m²
- Relative low ground costs
- High efficiency of marketed solar collectors
- Simple, well proven, and reliable technology
- Good cooperation between solar heating plant owners. Regular meetings with experience exchange
- Good thermal performance of existing solar heating plants: About 405-510 kWh/m² year
- Long lifetime of marketed solar collectors, > 30 years
- Low heat price for solar heating plants, about 0.04 euro/kWh
- Ongoing efforts to develop solar collectors and solar collector fields
- Ongoing efforts to develop and demonstrate seasonal heat storage and to improve the interplay with the energy system

Reasons for slow down of Danish market for solar heating plants

- No taxation on biomass
- Today: Heat pumps are installed in large numbers due to good economy
- Danish Energy Agency supports district heating companies installing large heat pumps in district heating systems. Total support in 2021 and 2022: **13.3 M** €
- Taxation of electricity for district heating companies reduced from the start of 2021: From 0.0028 €/kWh to 0.00054 €/kWh **98% reduction!**



Høje Taastrup PTES for Copenhagen district heating

70,000 m³ water pit heat storage for waste heat

- 19 cities
- 4 district energy systems
- 160 km. heating pipe
- 25 district heating companies
- 500,000 consumers
- 34,500 TJ (9,600 GWh)
- 20% of Danish heat consumption

Thanks for listening! Questions?

www.iea-shc.org

