

Electric loads in solar energy buildings Load management and grid relief

Michael Gumhalter, Thomas Ramschak

AEE – INSTITUTE FOR SUSTAINABLE TECHNOLOGIES

www.aee-intec.at

Motivation

AEE INTEC

energy networks

- 85% heating demand
 - 100% cooling demand
 - 60% electricity demand

How do solar supply systems and storage components affect electrical grid behavior?

www.aee-intec.at

AEE – INSTITUTE FOR SUSTAINABLE TECHNOLOGIES

Energy efficiency, electrification and volatile renewables are main drivers of decarbonization of the building sector \rightarrow challenge for

Development of solar energy supply concept with high solar fractions

Reference building Simulation study

Location **Building** Demand **Dwelling** Graz (Austria) High thermal standard 9 dwellings Gross floor are 842 m² U-Values 0.15 W/m²K User Hot water Thermal Household electricity demand comfort

H

□ 30 l/pers

□ 2.5 pers/flow

□ 22°C (Heating)

□ 25°C (Cooling)

□ 18.3 kWh/m²a

Electric Energy and Hot water simulation study

Individual load profiles per dwelling for DHW and household electricity

9.10.2023

Energy supply concept simulation study

heat/cold generation	HP	Geothermal heat pump
solar technologies	PV _{100%}	Photovoltaic 148.8 m ² (2
	PV _{33%} + PVT _{66%}	Photovoltaic 49.6 m ² (8. covered PVT 99.1 m ² (1
load shifting mechanisms	ADR	Active Demand Respon overheating building ma
	BAT	Battery with 20 kWh

dynamic building and system simulation with IDA ICE

www.aee-intec.at

Results **Energy KPIs**

electrical consumption_heating and domestic hot water electrical consumption_household cooling from PV(T) electrical consumption from grid -LCF_h -LCF_hh electrical consumption_cooling \blacksquare space heating and hot water from PV(T)household from PV(T) LCF_total -LCF_c $\text{LCF}_{total} = \frac{\int_{t_1}^{t_2} \min[g_{tot}(t), l_{tot}(t)]dt}{\int_{t_1}^{t_2} l_{tot}(t)dt}$ $LCF_{h} = \frac{\int_{t1}^{t2} \min[g_{tot}(t), l_{H}(t)]dt}{\int_{t1}^{t2} l_{H}(t)dt}$ $LCF_{c} = \frac{\int_{t_{1}}^{t_{2}} min[max[0,g_{tot}(t) - l_{H}(t)],l_{C}(t)]dt}{\int_{t_{1}}^{t_{2}} l_{C}(t)dt}$ $LCF_{hh} = \frac{\int_{t_1}^{t_2} \min[\max[0,g_{tot}(t) - l_H(t) - l_C(t)], l_{El}(t)]dt}{\int_{t_1}^{t_2} l_{El}(t)dt}$

Results Energy demand

Annually exchanged energy with the grid for all system variants

www.aee-intec.at

AEE – INSTITUTE FOR SUSTAINABLE TECHNOLOGIES

Scenario WP + PV + PVT + ADR + BAT

9.10.2023

Results Peak power

$$OPP = \frac{E_{1\%,peak}}{T}$$

 $PC_{consumption} = max \mid max[ne(t), 0] \mid$ $PC_{feed-in} = max \mid min[ne(t), 0] \mid$

Results Power from the grid (heating demand)

AEE – INSTITUTE FOR SUSTAINABLE TECHNOLOGIES

www.aee-intec.at

Conclusion

PVT and both examined storage methods are necessary to achieve the required metrics

- therefore include predictive methods
- market model (e.g. power-based tariffs)

Peak performances cannot be reduced using conventional methods

Controllers should not only be optimized for energetic KPIs and must

The additional effort must be justifiable through regulatory measures or a

The funding for the Sol4City project is provided by the Federal Ministry for Climate Protection, Environment, Energy, Mobility, Innovation, and Technology (project number FO999886948)

AEE – Institute for Sustainable Technologies (AEE INTEC) 8200 Gleisdorf, Feldgasse 19, Austria

Website: www.aee-intec.at Twitter: @AEE_INTEC

Michael Gumhalter

m.gumhalter@aee.at +43 (0)3112 5886-227

https://nachhaltigwirtschaften.at/de/sdz/projekte/sol4city.php