

Standard Introduction for Zero Carbon Buildings in China

CAI Wenbo, CABR, 10th Oct. 2023, Graz

CONTENTS

- Background
- Standards
- Technical standard for zero carbon buildings
- Conclusion

Background —

Building energy efficiency is the key to China's low-carbon development

nstitute of Building Environment and Energy

Carbon peak and neutrality targets

The climate change has become the global focus. In 2020, China proposed "Carbon Peak and Neutrality Target" and highlights the willingness to take effective policies and measures to achieve green and low-carbon development.

Carbon emission in building field

The greenhouse gas is the direct product from the burning of fossil ⁴ fuels. According to the UNEP, building industry accounts for 34% of global energy consumption.

In China, operation and construction of buildings account for 50.9% of social carbon emission.

Carbon Emission in China, 2020

Construction Others

[] 环能科技

中国建研院 环境能源研究院 Institute of Building Environment and Energy

Standards

 JGJ 26-1986——"Design standard for energy efficiency of residential buildings (Heating residential buildings part)"

✓ The first building energy efficiency standard in China;

- ✓ 30% reduction of building energy consumption from the 1980-1981 level;
- JGJ 26-1995——"Design standard for energy efficiency of residential buildings"
- ✓ A further 30% reduction based on JGJ 26-1986, and achieve 50% building energy saving rate;

Central heating map in China

EET环能科技

● 国建研院 环境能源研究院 Institute of Building Environment and Energy

Standards

- GB 50176-1993——"Code for thermal design of civil building" (Has been replaced by 2016 version)
- GB 50178-1993——"Standard of climatic regionalization for architecture"
- ✓ Dividing China into 5 primary zones and 11 secondary zones of climate for building design;

- GB 50189-2005——"Design standard for energy efficiency of public **buildings**"(Has been replaced by 2015 version)
- JGJ 26-2010——"Design standard for energy efficiency of residential **buildings in severe cold and cold zones**" (Has been replaced by 2018 version)
- JGJ 134-2010——"Design standard for energy efficiency of residential **buildings in hot summer and cold winter zones**" (Under revision in 2020)
- JGJ 75-2012——"Design standard for energy efficiency of residential buildings in hot summer and warm winter zones" Northern

 \checkmark A further 30% reduction based on JGJ 26-1995, and achieve 65% building energy saving rate;

 \checkmark The specific energy efficiency design standard for residential buildings in different climate zones were published;

 \checkmark Building energy efficiency design standards are gradually covering the whole country;

吃了环能科技

Standards

- GB/T 51359-2019——"Technical standard for nearly zero energy buildings"
- ✓ Proposing the definition and corresponding evaluation indexes of Ultra-low energy building, Nearly zero energy building and zero energy building;
- Ultra-low energy buildings: Without the help of renewable energy, 50% building energy saving rate should be achieved compared to 2010~2015's relevant standards;

Residential buildings

Building energy consumption		$\leqslant 65(kWh/(m^2 \cdot a)) \leqslant 8.0(kgce/(m^2 \cdot a))$						
e index	Annual heating demand (kWh/(m² • a))	Severe cold zones	Cold zones	and cold zonos an		Hot summer and warm winter zones		
ance		≪30	≪20	≪10		≪5		
Building performance index	Annual cooling demand (kWh/(m² • a))	$\leq 3.5 + 2.0 \times WDH_{20} + 2.2 \times DDH_{28}$						
	Air tightness of building envelope (air change rate N ₅₀)	\$).6	≪1.0				

✓ Meet the requirement of limiting value;

Public buildings

	Building e	energy saving rate			≥50%			
j performance index	Building energy efficiency improvement	Severe cold zones	Cold zones	Hot summer and cold winter zones	Moderate zones	Hot summer and warm winter zones		
	perfo	rate	≥2	5%		≥20%		
	Building	Air tightness of building envelope (air change rate N ₅₀)		1.0		_		

Meet the requirement of energy saving ratio;

Standards

> Nearly zero energy buildings: With the help of renewable energy contribution, realize 60%~75% reduction of building energy consumption compared to 2010~2015's relevant standards;

国建研院 环境能源码

Residential buildings

Buildin	g energy consumption	$\leqslant 55(kWh/(m^2 \cdot a)) \leqslant 6.8(kgce/(m^2 \cdot a))$						
ŋ	Annual heating demand (kWh/ (m ² • a))	Severe cold zones	Cold zones	Hot summer and cold winter zones	Moderate zones	Hot summer and warm winter zones		
ormanc		≪18	≪15	≪8		≪5		
Building performance index	Annual cooling demand (kWh/ (m ² • a))	$\leqslant 3+1.5 \times WDH_{20}+2.0 \times DDH_{28}$						
	Air tightness of building envelope (air change rate N ₅₀)	≤0.6 ≤1.0						
Utilizati	on ratio of renewable energy	≥10%						

Public buildings

Build	Building energy saving rate		≥60%						
rmance	Building energy efficiency improvement	Severe cold zones	Cold zones	Hot summer and cold winter zones	Moderate zones	Hot summer and warm winter zones			
perfc	rate	≥30%		≥20%					
Building performance index	Air tightness of building envelope (air change rate N ₅₀)	≤1.0		_					
Utilization ratio of renewable energy				≥10%					

First nearly zero energy building in China, 2014 CABR's office building

www.iea-shc.org

EET 环能科技

Standards -

- GB 55015-2021——"General code for energy efficiency and renewable energy application in buildings"
- ✓ Full-text mandatory standard;
- Solar energy system should be installed in new buildings;
- ✓ For residential buildings, 75% building energy saving rate should be achieve in severe cold and cold zones, and 65% building energy saving rate in other climate zones;
- ✓ For public buildings, 72% building energy saving rate should be achieve;

中国建研院 环境能源研究院 Institute of Building Environment and Energy

ビビT 环能科

- Challenge in building carbon reduction
- China's urbanization level is gradually improving, and there will be about 2,000,000,000.00 m² of new building area per year;
- ✓ Existing technology is difficult to support buildings to achieve the "30.60" target timely;
- Technical standard for zero carbon buildings
- ✓ In 2021, the national standard of zero carbon buildings start establishment;
- ✓ In Jul, 2023, the first draft of the standard is open to the whole society for opinions;

炙 环境能源

「「环能和

The standard covers all the life cycle of buildings

Main content •

- General rule 1.
- Nomenclature 2.
- Technical indicators 3.
- Building carbon reduction design 4.
- District carbon reduction design 5.
- Low carbon construction 6.
- Low carbon operation 7.
- Test and evaluation 8.
- Carbon offset 9.

环境能源码

NTERNATIONAL ENERGY AGENC

Technical standard for zero carbon buildings

- Evaluation objects and levels
- ✓ The standard applies to single building and building district;

- Low carbon and nearly zero carbon building
- ✓ The following conditions should be considered during the building design;

Local climate characteristics & site conditions;

Indoor environment parameters;

Passive design;

Equipment & systems;

Renewable energy & storage;

Zero carbon building

- ✓ On the basis of achieving nearly zero carbon buildings, the annual carbon emission is no more than 0 through the carbon offset methods (carbon offset ratio ≤ 30%), such as carbon emission right trade, green electricity trading and etc.
- Whole process zero carbon building
- \checkmark The embodied carbon emission should less than 350 kgCO₂/m²;

Calculation method for buildings

✓ Carbon emission intensity;

$\mathbf{C} = (\mathbf{E}_{\mathbf{h}} \times \mathbf{c}_{\mathbf{i}} + \mathbf{E}_{\mathbf{c}} \times \mathbf{c}_{\mathbf{i}} + \mathbf{E}_{\mathbf{i}} \times \mathbf{c}_{\mathbf{i}} + \mathbf{E}_{\mathbf{w}} \times \mathbf{c}_{\mathbf{i}} + \mathbf{E}_{\mathbf{e}} \times \mathbf{c}_{\mathbf{i}} + \mathbf{E}_{\mathbf{p}} \times \mathbf{c}_{\mathbf{i}} + \mathbf{E}_{\mathbf{f}} \times \mathbf{c}_{\mathbf{i}} - \mathbf{E}_{\mathbf{r}} \times \mathbf{c}_{\mathbf{i}}) / \mathbf{A}$

- C: carbon emission intensity, $kgCO_2/m^2$;
- E_h: heating energy consumption, kWh;
- E_c: cooling energy consumption, kWh;
- E_I: lighting energy consumption, kWh;
- E_w: domestic hot water energy consumption, kWh;
- E_e: elevator energy consumption, kWh;
- E_p: equipment energy consumption, kWh;
- E_f: cooking energy consumption, kWh;
- E_r: renewable energy generation, kWh;
- $c_{i}\!:$ carbon emission factor from GB/T 51366 "Standard for building carbon emission calculation";
- A: building area, m².

✓ Carbon reducing ratio;

$\mathbf{H}_{\mathrm{p}} = |\mathbf{C}_{\mathrm{R}} - \mathbf{C}_{\mathrm{D}}| / \mathbf{C}_{\mathrm{R}} \times 100\%$

- η_p : carbon reducing ratio, %;
- C_R : carbon emission intensity of reference building, kgCO₂/m², reference GB 55015-2021;
- C_D : carbon emission intensity of design building, kgCO₂/m².

ビビT 环能和

研院 环境能源研

Technical standard for zero carbon buildings

Index for residential buildings

- ✓ Low carbon buildings: set different carbon emission intensity limiting value according to different climate zones;
- ✓ Nearly zero carbon buildings: the radiation levels was taken into account in determining the limiting value;

limiting value for low carbon residential buildings (kgCO₂/m²·a)

	Severe cold zones	Cold zones	Hot summer and cold winter zones	Hot summer and warm winter zones	Moderate zones
Carbon emission intensity	23	21	21	23	18

Limiting value for nearly zero carbon residential buildings (kgCO₂/m²·a)

	Climate zones Radiation levels	Severe cold zones	Cold zones	Hot summer and cold winter zones	Hot summer and warm winter zones	Moderate zones
	I	14	13	/	/	/
Carbon emission	П	15	14	/	16	12
intensity		16	16	16	17	13
	IV	/	/	17	/	14

ビデ 环能科

Radiation levels in China

✓ GB/T 31155-2014——"Classification of solar energy resources——Global radiation"

ビビT 环能和

Technical standard for zero carbon buildings

Index for public buildings

- The situation of building functions, climate zones and solar radiation were taken into account in determining the limiting value of carbon emission;
- ✓ There are 2 indexes for public buildings, and only one of them need to be achieved;

		Carbon emission intensity (kgCO ₂ /m ²)								
Climate zones	Carbon reducing ratio	Small office	Large office	Small hotel	Large hotel	Shopping mall	Medical treatment	school		
Severe cold zones	≥40%	23	25	30	35	65	55	15		
Cold zones	≥35%	21	25	30	40	68	55	16		
Hot summer and cold winter zones		21	28	33	43	75	60	20		
Hot summer and warm winter zones	≥30%	23	30	36	45	85	65	25		
Moderate zones		18	22	28	30	63	45	13		
17						www.iea-shc	SOLAR HEATING & COOLI			

Index for low carbon public buildings

Index for public buildings

	Carbon	Radiation level	Carbon emission intensity (kgCO ₂ /m²·a)							
Climate zones	reducing ratio		Small office	Large office	Small hotel	Large hotel	Shopping mall	Medical treatment	School	
		I	16	19	20	24	49	40.5	10	
Severe cold zones	≥55%	Ш	17	20	22	25	51	42.5	11	
201100		Ш	18	21	24	26.5	53.5	44.5	12	
	≥50%	1	14	18	20	27	51.5	42.5	11	
Cold zones		Ш	15	19	22	28.5	54	43.5	12	
		111	16	20	24	30	56	45	13	
Hot summer and		111	16	23	22	30	61	47	16	
cold winter zones		IV	17	24	24	31	63	49	17	
Hot summer and		II	16	24	27	33	69	50	20	
warm winter zones	≥45%	ш	17	25	29	35	70	52	21	
		II	12	18	18	22	49.5	35	9	
Moderate zones		III	13	18	19	23	52	37	10	
		IV	14	18	21	25	54	38	11	

Index for nearly zero carbon public buildings

- Low carbon and nearly zero carbon district
- A geographical area with clear physical boundaries and mainly functions, such as residence, office, medical treatment, business and teaching;
- ✓ The following items should be considered to calculate the carbon emission of district;

buildings

Traffic

Municipal

Renewable energy

EET 环能科技

Carbon sink

Zero carbon district

✓ The annual carbon emission is no more than 0, through the carbon offset methods (carbon offset ratio ≤ 30%), such as carbon emission right trade, green electricity trading and etc.;

Calculation method for district

✓ District carbon emissions per capita:

 $C_p = C_d / P$

 C_p : district carbon emission per capita, tCO₂/p·a;

 C_d : district carbon emission, tCO₂/a;

P: total number of people in district, p;

✓ District carbon emission:

 $\mathbf{C}_{d} = \mathbf{C}_{d,b} + \mathbf{C}_{d,t} + \mathbf{C}_{d,m} + \mathbf{C}_{d,o} - \mathbf{C}_{d,r} - \mathbf{C}_{d,s} - \mathbf{C}_{d,e}$

 $C_{d,b}$: building carbon emission, tCO₂/a;

 $C_{d,t}$: traffic carbon emission, tCO₂/a;

C_{d,m}: municipal carbon emission, tCO₂/a;

 $C_{d,o}$: others carbon emission, tCO₂/a;

 $C_{d,r}$: carbon reduction of renewable energy generation, tCO₂/a;

 $C_{d.s}$: carbon reduction of carbon sink, tCO₂/a;

 $C_{d,e}$: carbon emission of energy transported outside the district, tCO₂/a.

✓ District carbon reduction ratio:

$R_{CC} = |C_{rd} - C_{dd}| / C_{rd} \times 100\%$

R_{CC}: district carbon reduction ratio, %;

 C_{rd} : reference district carbon emission, tCO₂/a;

C_{dd}: design district carbon emission, tCO₂/a;

Calculation method for district

✓ Building carbon emission:

 $C_{d,b} = \Sigma_i (C_{E,i} \times A_{b,i}) / 1000$

 $C_{E,i}$: carbon emission intensity of the ith building, kgCO₂/m²·a; A_{b,i}: building area of the ith building, m²;

✓Municipal carbon emission:

 $C_{d,m} = C_{d,m1} + C_{d,m2} + C_{d,m3}$

 $C_{d,m1}$: carbon emission of waste disposal, tCO₂/a; $C_{d,m2}$: carbon emission of district water supply system, tCO₂/a; $C_{d,m3}$: carbon emission of municipal lighting, tCO₂/a;

$C_{d,m1} = \Sigma_i (Wa_i \times P_i) \times EF_{wa} \times 365/1000$

Wa_i: waste disposal capacity per capita of the ith building, kg/(p·a); P_i: total number of people in the ith building, p; EF_{wa} : carbon emission factor of waste disposal, kgCO₂/kg;

$C_{d,m2} = \Sigma_i (W_i \times P_i \times EF_w \times 365) / 1000$

 W_i : daily water consumption of the ith building, m³/(p·d); P_i : total number of people in the ith building, p; EF_w : municipal water supply and sewage disposal carbon emission factor, kgCO₂/m³;

$C_{d,m3} = A_r \times ML \times t \times EF_1/1000000$

A_r: area of municipal road, m²;

ML: power density of municipal lighting, W/m²;

t: lighting annual service hours, hr;

EF₁: carbon emission factor of electricity, kgCO₂/kWh;

Calculation method for district

✓ Traffic carbon emission:

 $C_{d,t} = \Sigma_i \Sigma_j (L_{i,j} \times D_{i,j}) \times EF_i / 1000$

 $L_{i,j}$: the annually total distance of the jth vehicle using the ith energy source, km/a;

D_{i,j}: energy consumption per unit distance, L/km (kWh/km for e-mobility);

EF_i: carbon emission factor of the ith fuel, kgCO₂/L (kgCO₂/kWh for e-mobility);

✓ Other fuel carbon emission:

 $C_{d,o} = \Sigma_i (O_i \times EF_i)$

 O_i : energy consumption of the ith fuel, units/a; EF_i: carbon emission of the ith fuel, kgCO₂/units;

✓Carbon reduction of renewable energy generation:

 $C_{d,r} = \Sigma_i (E_i \times EF_i)/1000$

 E_i : annually generation of the ith renewable energy, kWh/a; EF_i : carbon emission factor of the ith renewable energy, kgCO_2/kWh;

✓ Carbon reduction of carbon sink:

$$\mathbf{C}_{\mathrm{d,s}}\!\!=\!\!\mathbf{A}_{\mathrm{s}}\!\times\!\mathbf{EF}_{\mathrm{s}}$$

 A_s : total area of green, m²;

 EF_s : carbon sink capacity of green, $tCO_2/m^2 \cdot a$;

• Index for district

Index for low carbon district

			Carbon emission per capita (kgCO₂/p⋅a)						
Climate zones	Carbon reduction	Radiation				Shopping mall	School		
	ratio	levels	Resident	it office	Hospital		Primary and middle school	collage	
		I	1040	490	1920	1020	390	980	
Severe cold zones		п	1090	470	1900	1010	410	1020	
		ш	1140	450	1880	1000	430	1060	
		I	940	470	1920	1010	390	970	
Cold zones		п	990	450	1900	1000	400	1000	
		ш	1030	430	1880	990	420	1040	
Hot summer and	≥30%	ш	1070	470	1870	1010	410	1020	
cold winter zones		IV	1120	450	1850	1000	430	1060	
Hot summer and		п	1100	460	1860	1110	410	1010	
warm winter zones		ш	1140	430	1840	1100	420	1040	
		п	820	460	1620	920	380	950	
Moderate zones		ш	860	440	1610	910	390	980	
		IV	910	420	1600	900	410	1010	

23

Index for district

Index for nearly zero carbon district

			Carbon emission per capita (kgCO₂/p⋅a)						
Climate zones	Carbon reduction	Radiation levels				Shopping	School		
	ratio		Resident	Office	Hospital	mall	Primary and middle school	collage	
		I	510	280	600	580	230	560	
Severe cold zones		п	610	270	600	580	240	580	
		ш	700	260	600	570	250	610	
		I	470	270	600	580	230	560	
Cold zones		п	570	260	600	570	230	570	
		ш	690	250	600	570	240	590	
Hot summer and	≥60%	ш	690	270	600	580	240	590	
cold winter zones		IV	790	260	600	570	250	610	
Hot summer and		п	650	260	600	600	230	580	
warm winter zones		ш	740	250	600	600	240	600	
Moderate zones		п	430	260	600	530	220	550	
		ш	520	250	600	520	230	560	
		IV	620	240	600	510	230	580	

Conclusion

Throughout the development trend of China's construction industry in ٠ recent years, the development of zero carbon buildings:

- \checkmark Be an inevitable requirement to promote the comprehensive utilization of resources, construct a conservation-oriented society, and develop circular economy;
- \checkmark Be a key link to save energy and ensure the national energy security;
- \checkmark Lead the direction of development for future buildings in China.

Thank you for listening!

CAI Wenbo, CABR, 10th Oct. 2023, Graz

c18519533681@163.com

