

Why SOLAR COOLING? Why in sunny regions?

Chain of consequences

increasing standards of living & climatic changes

increasing cooling and air-conditioning demand

increasing electricity consumption & black-outs

...in sunny areas

Commitment of the countries to reach ambitious objectives

Renewable Energy & Energy Efficiency measures

Unsustainable increase in the share of electricity consumption for A/C

An infinite energy source nearly in phase with cooling demand

World Market so far

Open Issues

(2015)

- Cost reduction per kWh_{cooling}
- Heat rejection
- Electricity consumption

Europe

World

Source: Solem Consulting / TECSOL

Vision for solar cooling – ROADMAP until 2050

The Challenge is NOW...HERE

Cost of solar cooling technology is expected to reduce

Electricity cost is expected to continuously increase

Investment Costs

The expected cost in 2020 is 2000 €/kW_{capacity} for small sizes

H2020 Project ZEOSOL, GRANT AGREEMENT N:760210.

"Integrated solar heating and cooling unit based on a novel zeolite chiller and heat pump"

250

1,200

30,000

20,000

15,000

10,000

12,000 10,000

8,000

6,000 4,000

2,000

Specific investment costs [€/kW]

150

Nominal chilling capacity [kW]

Nominal chilling capacity [kW]

Main conclusions on solar cooling market

Thermal Solar cooling

- ✓ development of new, small scale heat driven chillers < 35 kWc
 </p>
- ✓ development of high efficient double/triple effect absorption chillers
- ✓ development of single-axis tracking concentrating collectors

HOWEVER

- **X** High investment cost
- **X** heat rejection in hot and humid countries
- X Standard solutions are still missing

PV solar cooling

- Components are market-available.
- Small systems require low effort for planning and installation

- Coincidence of A/C demand and solar energy need to be improved using battery or cold storage
- ⊘ The cost for this is currently still high, but expected to drop

Solar Cooling Technologies ROADMAP

Advanced Thermal Energy Storages

GOAL: size reduction

volume needed to store
1850 kWh, with
consideration of 25% heat
losses, based on a 70°C
temperature increase for
water

Sensible VS PCMs

Advantage Disadvantage

- Simple
- Cheap
- Reliable
- Low storage density
- Need for good insulation

- Simple
- High storage density
- Constant temperature
- Cost
- Need for insulation
- Other...

Туре	Tank cost [€]	Capsule cost [€/capsule]	PCM cost [€/capsule]	Others [€]	Total Cost [€]
Sensible	998	-	-	-	998
PCM	998	15.37	476.62	100	1574.62

KEY TRENDS

Development of highperforming materials...

HYDRATED SALTS BIO-MATERIALS

SUGAR ALCOHOLS FATTY ACIDS

...in different shapes

MARKET DRIVER

Cost of PCMs will reduce due to scale effect

Tailoring for each specific application and location is possible

APPLICATIONS

Greenbox system for pharmaceuticals

FORECASTS

Market value expected to reach US\$1.5 billion by 2020

Middle-East and Africa as 2nd growing world market

market

Doha 2022 FIFA World Cup

Hybrid Chiller: HOW IT WORKS

- It consists of a "series" connection of thermally-driven unit and a traditional vapor compression unit
- It allows to exploit the benefits and both main peculiarities components:

sorption systems have electricity consumption extremely low and need limited maintenance

electric chillers offer high temperature precision in regulation and fast response to temperature fluctuations.

Hybrid Chiller: the concept

A commercial silica gel adsorption unit with 2 adsorbers working in counterphase

nominal power: 10 kW

nominal COP: 0.6

An OEM vapor compression chiller, employing R410a as refrigerant.

nominal power: 10 kW

nominal COP: 3.4

ANNIVERSARY

Hybrid Chiller: commercial UNIT

With Cold water temperature 16/19 °C European Seasonal Energy Efficiency Ration ESEER: (electrical) 19,6 (max thermic) 0,65

Current specific cost: 0.6 – 0.8 k€/kW_{capacity}

Main conclusions on new generation SCS

Technical analysis on solar cooling systems highlights that storage and hybrid chillers can play a key role for higher efficiency and cost reduction

PCMs possess the right features for replacing sensible media (Water) for heat storage in SCS

Hybrid chillers are a very promising techinical opportunity allowing a «smart» exploiment of the solar energy souce (Thermal and PV)

They have just entered the market

For more information...

...you can visit the following web sites:

http://task53.iea-shc.org/publications

Salvatore Vasta

Consiglio Nazionale delle Ricerche (CNR) Istituto di Tecnologie Avanzate per l'Energia "Nicola Giordano" (ITAE)

C E N T R O P R O V E

Via Comunale S. Lucia n. 40 98126 S. Lucia, Messina, ITALY

P: +39.090.624.404 - F: +39.090.624.247

Skype: salvo-vasta

W: www.itae.cnr.it - E: salvatore.vasta@itae.cnr.it

Host Sponsors:

Organizaci By:

